Ozonated olive oil enhances the growth of granulation tissue in a mouse model of pressure ulcer

Fumitoshi Sakazaki¹, Hiromi Kataoka², Tomofumi Okuno¹, Hitoshi Ueno¹, Masanori Semma², Atsushi Ichikawa², and Katsuhiko Nakamuro¹

1. Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata, Osaka 573-0101, Japan
2. School of Pharmaceutical Sciences, Mukogawa Women’s University, Nishinomiya, Hyogo 663-8179, Japan

Abstract

The curative effect of ozonated olive oil was evaluated using mouse models of cut wounds and pressure ulcers (decubitus or bedsores). Although ozonated olive oil did not significantly accelerate or decelerate wound contraction in either model, some histological modifications were observed. Ozonated olive oil induced blood coagulation in the hypodermis and cell infiltration in the dermis 1 day after its application. Moreover, it enhanced the formation of granulation tissue 10 days after application. These results indicate that ozonated olive oil promotes granulation tissue formation and is effective in the healing of wounds and pressure ulcers.

Key-words

Ozone, Ozonated olive oil, Granulation tissue formation, Pressure ulcer, Wound healing

Introduction

Ozonated olive oil is prepared by bubbling ozone gas into olive oil that contains triolein, a trioleoylglycerol as a main constituent. Since three ozone molecules attack the –C=C– double bonds of the triolein to produce one molecule of trioleintriozonide, ozonated olive oil may contain degraded products of trioleintriozonide such as aldehydes and fatty acids [1-3]. It has been reported that ozonated olive oil can be effective for treating pressure ulcer (decubitus or bedsores) and fistula [1, 4]. For an intractable disease like pressure ulcers that require long-term treatment, inexpensive medications such as ozonated olive oil are desirable. However, the mechanisms of the curing action of ozonated olive oil for pressure ulcers have not yet been completely elucidated.

Generally, recovery from cut wound is considered to progress in the following manner [5]. First, in the inflammation period, blood vessels expand and neutrophils and macrophages collect at the wound site where they are recognized as an exudate or pus. Second, in the proliferation period, various growth factors are produced to stimulate the proliferation of fibroblasts and keratinocytes, and a granulation tissue develops. Although the appearance of a pressure ulcer differs from that of the cut wound, it is assumed that the healing of both these wounds follow a similar process. The
first step of this healing process is called the black period. This is the most severe stage of the pressure ulcer, and the wound is surrounded by necrotic tissue. At the next stage, granulation tissue, which appears red in color, proliferates from the bottom of the wound. In the final step, white epithelial tissue extends from the flanks and covers the wound [6]. To elucidate the pharmacological effects of ozonated olive oil, it is necessary to identify the stage at which ozonated olive oil acts.

Transforming growth factor (TGF)-β is produced by platelets, keratinocytes and other immunocompetent cells in order to induce the growth of granulation tissue [7]. It has been reported that the expression of TGF-β is induced by hydrogen peroxide, and hydrogen peroxide involves the wound healing process [8, 9]. Hydrogen peroxide can be produced by the degradation of superoxide by two enzymes super oxide dismutase (SOD)-1 and SOD-2 [10, 11]. SOD-1 is also known as Cu-Zn SOD while SOD-2 is known as Mn-SOD, being based on the metal ions that are necessary for the enzyme activity. It has been reported that those two enzymes are induced by oxidative stress [12].

We have already reported that ozonated olive oil suppresses lymphocyte mitogenesis and macrophage NO production at low concentrations, and does not induce oxidative stress [2]. According to the hypothesized process of wound healing mentioned above, an anti-inflammatory effect of the ozonated olive oil conflicts with the process of wound healing effect. The relationship between the anti-inflammatory effect of ozonated olive oil and the wound healing process should be elucidated. Therefore, we developed mouse models of cut wounds and pressure ulcers and treated the animals with ozonated olive oil to evaluate the role of ozonated olive oil in the healing process. Further, we evaluated the expressions of TGF-β, SOD-1 and SOD-2 at the pressure ulcers in order to elucidate the mechanism that ozonated olive oil cures a pressure ulcer.

Materials and methods

Preparation of ozonated olive oil: Olive oil (100 ml) (Yamazen Seiyaku, Osaka, Japan) was placed in a 250-ml washing vessel. An ozone/oxygen mixture (20 µg/ml ozone) was passed through the olive oil at 0.5 l/min for 35 h. The ozonated olive oil was stored at 4°C and melted at a room temperature before use.

Wound model: A mouse wound model was developed according to the method described by Iba et al. [13]. Five-week-old male BALB/c mice (Japan SLC, Shizuoka, Japan) were used. The back hair was shaved under pentobarbital anesthesia, and a circular patch of skin (diameter 7.5 mm) was surgically removed using scissors. The wounds were treated with 15 µl of ozonated or control olive oil. The wound healing state was observed with or without dressing for 21 days. The shapes of the wounds were copied onto a transparent sheet with a pen, the figures were scanned, and the wound areas were analyzed using the Scion Image Beta 4.0.2 software (Scion, Frederick,
Pressure ulcer model: A mouse pressure ulcer model was developed according to the method described by Stadler et al. [14], with a slight modification. Five-week-old male BALB/c mice were used. The hair on the back was shaved using a clipper under pentobarbital anesthesia. The back skin was pinched by two circular ferrite magnets of 12-mm diameter, 5-mm thickness, and a magnetic force of 1250 gauss (Seiko Sangyo, Chiba, Japan). The magnets were placed at a distance of 3.5 cm from the root of the tail in the cranial direction, and the distance between the centers of the magnets was 2 cm (Figure 1). The skin was sandwiched between the two magnets and compressed by their magnetic force. The magnets were attached at 9:00 AM, and detached at 5:00 PM for three sequential days. On the following day, 7.5 μl of ozonated olive oil was applied to each side at 9:00 AM. Normal olive oil was applied as a control. Ulcer healing was observed for 21 days.

Histological evaluation: The back skin, including the wound area, was removed surgically, fixed overnight in 0.1 mol/l phosphate buffer (pH 7.4) containing 10% formalin, and embedded in paraffin. Sections on glass slides were dried at 37°C overnight and stained with hematoxylin and eosin for evaluating the general structure or with the Masson trichrome stain for collagen visualization.

Reverse transcription-polymerase chain reaction (RT-PCR) of TGF-β, SOD-1 and SOD-2 mRNAs: The wounded skin were excised and RNA was extracted with an RNeasy Fibrous Tissue Mini Kit (QIAGEN GmbH, Hilden, Germany), reverse transcribed using a high-capacity reverse transcription kit (Applied Biosystems Inc., Foster City, CA, U.S.A.), and analyzed by real-time PCR with SYBR premix ExTaq (Takara Bio Inc.) and primer sets obtained from Takara Bio Inc. The mRNA levels were calculated as ratios relative to the corresponding β-actin mRNA levels.

Results and discussion

Effects of ozonated olive oil in the mouse wound model: The mouse models of cut wound were treated with ozonated olive oil, and the rate of wound closure was compared with that of the non-treated mice and the mice treated with control olive oil (Figure 2). With a dressing, suppuration was observed in the control group 4–7 days after application, but it was suppressed in the ozonated olive oil group (Figure 2a). Ozonated olive oil tended to promote wound contraction although the contraction was not statistically significant (Figure 2b). Without a dressing, although
the wounds did not suppurate and dried, wound closure was similar to that in the dressing group (Figure 2a, c).

Effects of ozonated olive oil in the pressure ulcer model: The pressure ulcer mouse models were treated with ozonated olive oil, followed up, and the outcome was compared with that of the non-treated mice and the mice treated with control olive oil (Figure 3). There was no significant difference in the rate of wound closure among the non-treated, control olive oil, and ozonated olive oil groups (data not shown). In the non-treated and control olive oil groups, the skin became solid and dry, and showed internal hemorrhage 2 days after treatment (Figure 3a). A crust was formed at 7–10 days, and after the crust had exfoliated the wounds closed at 14–21 days (Figure 3b). In the ozonated olive oil group, the bleeding was inhibited 2 days after treatment (Figure 3a). A crust was formed at 10 days, similar to that in the control groups, and wound closure followed crust exfoliation (Figure 3b).

Fig. 2 Wounds 4 and 7 days after treatment. (a) Typical wound appearance. (b) Decrease in the size of dressed wounds. (c) Decrease in the size of undressed wounds. Squares, non-treated; circles, treated with control olive oil; triangles, treated with ozonated olive oil. Results are presented as mean ± S.D. (n = 4/group). Statistical significance was determined by Student’s t test; *p<0.05.
Histological evaluation of the pressure ulcer model treated with ozonated olive oil: Histological evaluation was performed in mice at 1 and 10 days after treatment with ozonated olive oil (Figures 4 and 5). In the control groups, 1 day after the treatment, the epidermis was lost, and leakage of red blood cells from the hypodermis and infiltration of white blood cells under the musculi cutanei were observed (Figure 4a, c). In the ozonated olive oil group, the epidermis was eliminated in a manner similar to that in the control group, and the cell infiltration was enhanced in the hypodermis and the dermis around the area where the magnets had been placed (Figure 4b). Moreover, a clot was observed in a hypodermal blood vessel (Figures 4d).

Ten days after treatment with ozonated olive oil, granulation tissue grew from under the musculi cutanei, and epidermal and dermal tissues extended from the side of the wounded area (Figure 5a, c). Ozonated olive oil did not enhance the extension of the epidermis and dermis, whereas it reinforced the development of granulation tissue (Figure 5b, d). Masson trichrome staining did not demonstrate any significant difference in the dermal collagen synthesis (Figure 5c, d).
Figure 4. Histological appearance of a pressure ulcer 1 day after treatment. Sections were stained with hematoxylin and eosin. The right half of the pictures shows the wounded area. (a, c) Control olive oil group; (b, d) ozonated olive oil group; (a, b) hypodermis around the wounded area showing infiltration of white blood cells; (c, d) blood vessels in the wounded hypodermis showing red blood cells and a blood clot (arrow).

Figure 5. Histological appearance of a pressure ulcer 10 days after treatment. The left half of the pictures shows an area of epithelium that has already regenerated (downward arrow). The right half shows granulation tissue (upward arrow). (a, c) Control olive oil group; (b, d) ozonated olive oil group; (a, b) hematoxylin and eosin stain; (c, d) Masson trichrome stain. Typical results from 3 mice are shown.
Effects of ozonated olive oil on TGF-β, SOD-1 and SOD-2 expression in the pressure ulcer model: The expression of TGF-β at a part of the pressure ulcer was evaluated by RT-PCR (Fig. 6a). The expression of TGF-β mRNA was detected after the making of the pressure ulcer. Ozonated olive oil increased the TGF-beta mRNA expression at three days after the application of ozonated olive oil. This result suggests an increasing expression of TGF-β involves into the growth of granulation tissue and the restoration of skin organization after the inflammation. The expressions of SOD-1 and SOD-2 were also evaluated on the next day of the treatment of ozonated olive oil (Fig. 6b). The expressions of SOD-1 and SOD-2 were also detected and enhanced by ozonated olive oil. It is suggested that ozonated olive oil induced an oxidative stress and the expressions of SOD-1 and SOD-2, which degrades a super oxide anion into hydrogen peroxide.

![Graphs showing TGF-β and SOD mRNA expression](image)

Fig. 6. Ozonated olive oil enhanced TGF-β, SOD1 and SOD2 mRNA expression in healing process of pressure ulcer. Wounded areas of pressure ulcer were exiced and mRNA levels were evaluated by realtime RT-PCR. (a) TGF-β on 3 days after the administration of ozonated olive oil, (b) SOD1 and SOD2 on the next day after the administration of ozonated olive oil; open bars represent control mice, closed bars represent ozonated olive oil-administered mice. Results are presented as means ± S.D. (n = 3–5/group). Significance of difference was determined between the control group and the ozonated olive oil-administered group. *, p < 0.05

Ozonated olive oil suppressed suppuration and hemorrhage in the wounds and pressure ulcers of mouse models, respectively. This agrees with the results of previous case reports [1, 4] that present that ozonated olive oil significantly accelerates wound healing. Despite the inhibition of suppuration, there was no delay in wound closure; in fact, it tended to be facilitated. In these experiments we used young and healthy mice that have a high curative ability and the wounds were cured even with no treatment. That may be a reason why ozonated olive oil did not significantly accelerate the wound contraction. These results might suggest that ozonated olive oil accelerates wound healing of mice as well as human.

In the wound healing process, white blood cells infiltrate into the wound area to produce cytokines or growth factors during the inflammation period. These factors activate fibroblasts to proliferate
and form granulation tissue [5]. This suggests that suppression of inflammation could result in restoration of wound healing. On the other hand, a wound in the oral mucous membrane shows less inflammation, and wound healing occurs earlier than that in the skin [15]. This suggests that inflammation can be selectively suppressed when the growth of wound granulation tissue is not suppressed. In our study, ozonated olive oil inhibited suppuration and hemorrhage without delaying wound healing. This demonstrates that ozonated olive oil selectively suppresses one step of the inflammation process and enhances granulation tissue growth.

In our histological study, the treatment with ozonated olive oil caused blood coagulation, enhanced cell infiltration, and later promoted the formation of granulation tissue. These results suggest that ozonated olive oil inhibits purulence and hemorrhage, but does not suppress the entire inflammation reaction, and it possibly promotes cell infiltration and induces granulation tissue formation.

Matsuno et al. reported that the ozone treatment suppressed aggregation of platelets in response to aggregation inducers such as thrombin and collagen [16]. Valacchi et al., however, reported that ozone treatment itself induced aggregation of platelets and release of TGF-β in a study of ozone autohemotherapy in which a patient's blood was bubbled with ozone and instilled into his/her vein [17]. In immune response, a cytokine can induce expression of some cytokines while it suppresses expression of other cytokines. TGF-β can concern two contrastive effects of ozonated olive oil: The suppression of suppuration and hemorrhage and the enhancement of formation of granulation tissue. The application treatment with ozonated olive oil probably stops bleeding by activating the platelets, which release signaling factors, and these promote granulation tissue formation as part of the healing process of wounds and pressure ulcers.

TGF-β is produced by platelets, keratinocytes and other immunocompetent cells to induce the growth of granulation tissue [7]. It has been reported that the expression of TGF-β is induced by hydrogen peroxide, and hydrogen peroxide involves the wound healing process [8, 9]. Hydrogen peroxide can be produced from the degradation of superoxide by two enzymes SOD-1 and SOD-2 [10, 11]. It has been reported that those two enzymes are induced by oxidative stress [12]. From our results, SOD-1 and SOD-2 was induced on the next day of application of ozonated olive oil and the expression of TGF-β was enhanced in three days after the application. It might suggest that ozonated olive oil exerts an oxidative stress to induce SOD-1 and SOD-2, the enzymes produce hydrogen peroxide, and hydrogen peroxide enhances the expression of TGF-β to promote the wound-repair process.

Conclusions

The healing effect of ozonated olive oil was evaluated using mouse models of wounds and pressure ulcers. Ozonated olive oil inhibited suppuration and hemorrhage without delaying wound healing.
The histological evaluation of pressure ulcers revealed that ozonated olive oil coagulated blood, enhanced cell infiltration, and later promoted proliferation of granulation tissue. Ozonated olive oil probably activates platelets to aggregate, release signaling factors, and promote formation of granulation tissue. Ozonated olive oil is suggested to induce SOD-1, SOD-2 and TGF-β. Our results indicate that ozonated olive oil is effective in the healing of wounds and pressure ulcers.

References
